40 research outputs found

    Evidence for HI replenishment in massive galaxies through gas accretion from the cosmic web

    Get PDF
    We examine the H i -to-stellar mass ratio (H i fraction) for galaxies near filament backbones within the nearby Universe (d < 181 Mpc). This work uses the 6 degree Field Galaxy Survey (6dFGS) and the Discrete Persistent Structures Extractor (DisPerSE) to define the filamentary structure of the local cosmic web. H i spectral stacking of H i Parkes All Sky Survey (HIPASS) observations yield the H i fraction for filament galaxies and a field control sample. The H i fraction is measured for different stellar masses and 5th nearest neighbour projected densities (ÎŁ5) to disentangle what influences cold gas in galaxies. For galaxies with stellar masses log(M⋆) ≀ 11 M⊙ in projected densities 0 ≀ ÎŁ5 < 3 galaxies Mpc−2, all H i fractions of galaxies near filaments are statistically indistinguishable from the control sample. Galaxies with stellar masses log(M⋆) ≄ 11 M⊙ have a systematically higher H i fraction near filaments than the control sample. The greatest difference is 0.75 dex, which is 5.5σ difference at mean projected densities of 1.45 galaxies Mpc−2. We suggest that this is evidence for massive galaxies accreting cold gas from the intra-filament medium which can replenish some H i gas. This supports cold mode accretion where filament galaxies with a large gravitational potential can draw gas from the large scale structure

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s−1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 40∘40^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of ∌1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM∌0.81−0.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    AGN feeding and feedback in fornax a : kinematical analysis of the multi-phase ISM

    Get PDF
    We present a multi-wavelength study of the gaseous medium surrounding the nearby active galactic nucleus (AGN), Fornax A. Using MeerKAT, ALMA, and MUSE observations, we reveal a complex distribution of the atomic (H i), molecular (CO), and ionised gas in its centre and along the radio jets. By studying the multi-scale kinematics of the multi-phase gas, we reveal the presence of concurrent AGN feeding and feedback phenomena. Several clouds and an extended 3 kpc filament – perpendicular to the radio jets and the inner disk (r . 4:5 kpc) – show highly-turbulent kinematics, which likely induces non-linear condensation and subsequent chaotic cold accretion (CCA) onto the AGN. In the wake of the radio jets and in an external (r & 4:5 kpc) ring, we identify an entrained massive ( 107 M ) multi-phase outflow (vOUT 2000 km s1). The rapid flickering of the nuclear activity of Fornax A ( 3 Myr) and the gas experiencing turbulent condensation raining onto the AGN provide quantitative evidence that a recurrent, tight feeding and feedback cycle may be self-regulating the activity of Fornax A, in agreement with CCA simulations. To date, this is one of the most in-depth probes of such a mechanism, paving the way to apply these precise diagnostics to a larger sample of nearby AGN hosts and their multi-phase inter stellar medium.The European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme; Montage is funded by the National Science Foundation; the Department of Science and Technology and National Research Foundation.http://www.hanspub.org/Journal/AAS.htmlam2022Physic

    A new look at old friends – I. Imaging classical radio galaxies with uGMRT and MeerKAT

    Get PDF
    We have undertaken a systematic study of FR I and FR II radio galaxies with the upgraded Giant Metrewave Radio Telescope (uGMRT) and MeerKAT. The main goal is to explore whether the unprecedented few ÎŒJy sensitivity reached in the range 550–1712 MHz at the resolution of ∌4–7 arcsec reveals new features in the radio emission which might need us to revise our current classification scheme for classical radio galaxies. In this paper, we present the results for the first set of four radio galaxies, i.e. 4C 12.02, 4C 12.03, CGCG 044–046, and CGCG 021–063. The sources have been selected from the 4C sample with well-defined criteria and have been imaged with the uGMRT in the range 550–850 MHz (band 4) and with the MeerKAT in the range 856–1712 MHz (L-band). Full resolution images are presented for all sources in the sample, together with MeerKAT in-band spectral images. Additionally, the uGMRT–MeerKAT spectral image and MeerKAT L-band polarization structure are provided for CGCG 044–046. Our images contain a wealth of morphological details, such as filamentary structure in the emission from the lobes, radio emission beyond the hotspots in three sources, and misalignments. We briefly discuss the overall properties of CGCG 044–046 in the light of the local environment as well, and show possible restarted activity in 4C 12.03 which needs to be confirmed. We conclude that at least for the sources presented here, the classical FR I/FR II morphological classification still holds with the current improved imaging capabilities, but the richness in details also suggests caution in the systematic morphological classification carried out with automatic procedures in surveys with poorer sensitivity and angular resolution.http://mnras.oxfordjournals.orghj2022Physic

    WALLABY Pre-Pilot and Pilot Survey: the Tully Fisher Relation in Eridanus, Hydra, Norma and NGC4636 fields

    Get PDF
    The WALLABY pilot survey has been conducted using the Australian SKA Pathfinder (ASKAP). The integrated 21-cm HI line spectra are formed in a very different manner compared to usual single-dish spectra Tully-Fisher measurements. It is thus extremely important to ensure that slight differences (e.g. biases due to missing flux) are quantified and understood in order to maximise the use of the large amount of data becoming available soon. This article is based on four fields for which the data are scientifically interesting by themselves. The pilot data discussed here consist of 614 galaxy spectra at a rest wavelength of 21cm. Of these spectra, 472 are of high enough quality to be used to potentially derive distances using the Tully-Fisher relation. We further restrict the sample to the 251 galaxies whose inclination is sufficiently close to edge-on. For these, we derive Tully-Fisher distances using the deprojected WALLABY velocity widths combined with infrared (WISE W1) magnitudes. The resulting Tully-Fisher distances for the Eridanus, Hydra, Norma and NGC 4636 clusters are 21.5, 53.5, 69.4 and 23.0 Mpc respectively, with uncertainties of 5–10%, which are better or equivalent to the ones obtained in studies using data obtained with giant single dish telescopes. The pilot survey data show the benefits of WALLABY over previous giant single-dish telescope surveys. WALLABY is expected to detect around half a million galaxies with a mean redshift of 푧 = 0.05(200푀 푝푐). This study suggests that about 200,000 Tully-Fisher distances might result from the survey

    MeerKAT-16 H I observation of the dIrr galaxy WLM

    Get PDF
    We present observations and models of the kinematics and the distribution of the neutral hydrogen (HI) in the isolated dwarf irregular galaxy, Wolf-Lundmark-Melotte (WLM). We observed WLM with the Green Bank Telescope (GBT) and as part of the MeerKAT Early Science Programme, where 16 dishes were available. The HI disc of WLM extends out to a major axis diameter of 30 arcmin (8.5 kpc), and a minor axis diameter of 20 arcmin (5.6 kpc) as measured by the GBT. We use the MeerKAT data to model WLM using the TiRiFiC software suite, allowing us to fit different tilted-ring models and select the one that best matches the observation. Our final best-fitting model is a flat disc with a vertical thickness, a constant inclination and dispersion, and a radially-varying surface brightness with harmonic distortions. To simulate bar-like motions, we include second-order harmonic distortions in velocity in the tangential and the vertical directions. We present a model with only circular motions included and a model with non-circular motions. The latter describes the data better. Overall, the models reproduce the global distribution and the kinematics of the gas, except for some faint emission at the 2-sigma level. We model the mass distribution of WLM with a pseudo-isothermal (ISO) and a Navarro-Frenk-White (NFW) dark matter halo models. The NFW and the ISO models fit the derived rotation curves within the formal errors, but with the ISO model giving better reduced chi-square values. The mass distribution in WLM is dominated by dark matter at all radii.Comment: Accepted for publication in MNRAS, 25 pages, 21 figures, 5 table

    Viewing classical radio galaxies with the upgraded GMRT and MeerKAT

    Get PDF
    We present a progress report of a study of FR I and FR II radio galaxies. Several new morphological features in the radio emission are now revealed using the high (mJy) sensitivity reached in the range 550–1712 MHz, more than a factor of three, at the high ( 400 700) angular resolution with the upgraded Giant Metrewave Radio Telescope (uGMRT) and MeerKAT. Therefore, the aim of this study is to understand if we need to revise our current classification scheme for classical radio galaxies. In order to address our goals, we have carefully constructed a sample of 14 (6 FR I, 6 FR II and 2 FR 0) radio galaxies. The uGMRT and MeerKAT images of our four target sources revealed a wealth of morphological details, e.g., filamentary structure in the emission from the lobes, misalignments, radio emission beyond the hot-spots in three sources, etc.; see Fanaroff et al. (2021). Here, we present preliminary results for two more radio galaxies from our sample using uGMRT, in the light of the local environment. Finally, we are awaiting uGMRT and MeerKAT observations of remaining sample sources. Our results show that for the radio galaxies in this study, the morphological classification scheme for the classical FR I/FR II radio galaxies still holds, even with the improved imaging capabilities of the uGMRT and MeerKAT. Furthermore, we need to be cautious when using automated procedures for classification schemes, e.g., in surveys (with poorer sensitivities and angular resolutions) because of the rich morphological details that are shown in our uGMRT and MeerKAT images.The Department of Atomic Energy, Government of India; the Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese, Progetto di Grande Rilevanza; the South African Research Chairs Initiative of the Department of Science and Technology; the National Research Foundation; the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme; the Italian Minister for Research and Education (MIUR) and the South African Radio Astronomy Observatory.https://www.mdpi.com/journal/galaxiesam2022Physic

    MeerKAT-16 HI observation of the dIrr galaxy WLM

    Get PDF
    We present observations and models of the kinematics and the distribution of the neutral hydrogen (Hi) in the isolated dwarf irregular galaxy, Wolf-Lundmark-Melotte (WLM). We observed WLM with the Green Bank Telescope (GBT) and as part of the MeerKAT Early Science Programme, where 16 dishes were available. The Hi disc of WLM extends out to a major axis diameter of 300 (8.5 kpc), and a minor axis diameter of 200 (5.6 kpc) as measured by the GBT. We use the MeerKAT data to model WLM using the TiRiFiC software suite, allowing us to t di erent tilted-ring models and select the one that best matches the observation. Our nal best- tting model is a at disc with a vertical thickness, a constant inclination and dispersion, and a radially-varying surface brightness with harmonic distortions. To simulate bar- like motions, we include second-order harmonic distortions in velocity in the tangential and the vertical directions. We present a model with only circular motions included and a model with non-circular motions. The latter describes the data better. Overall, the models reproduce the global distribution and the kinematics of the gas, except for some faint emission at the 2 level. We model the mass distribution of WLM with a pseudo-isothermal (ISO) and a Navarro-Frenk-White (NFW) dark matter halo models. The NFW and the ISO models t the derived rotation curves within the formal errors, but with the ISO model giving better reduced chi-square values. The mass distribution in WLM is dominated by dark matter at all radii.The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the Na- tional Research Foundation, an agency of the Department of Science and Innovation. This work is based upon research supported by the South African Research Chairs Initiative of the Department of Sci- ence and Technology and National Research Foundation. The nancial assistance of the South African Radio Astron- omy Observatory (SARAO) towards this research is hereby acknowledged (www.sarao.ac.za). PK is partially supported by the BMBF project 05A17PC2 for D-MeerKAT. AS acknowledges the Russian Science Foundation grant 19-12-00281 and the Program of development of M.V.http://mnras.oxfordjournals.orgam2021Physic
    corecore